Commonly used radioactive dating elements

On the other hand, you would use a calendar, not a clock, to record time intervals of several weeks or more. The half-lives have all been measured directly either by using a radiation detector to count the number of atoms decaying in a given amount of time from a known amount of the parent material, or by measuring the ratio of daughter to parent atoms in a sample that originally consisted completely of parent atoms.

Work on radiometric dating first started shortly after the turn of the 20th century, but progress was relatively slow before the late. However, by now we have had over fifty years to measure and re-measure the half-lives for many of the dating techniques. Very precise counting of the decay events or the daughter atoms can be done, so while the number of, say, rhenium atoms decaying in 50 years is a very small fraction of the total, the resulting osmium atoms can be very precisely counted.

Essential Concepts

For example, recall that only one gram of material contains over 10 21 1 with 21 zeros behind atoms. Even if only one trillionth of the atoms decay in one year, this is still millions of decays, each of which can be counted by a radiation detector!

The uncertainties on the half-lives given in the table are all very small. There is no evidence of any of the half-lives changing over time. In fact, as discussed below, they have been observed to not change at all over hundreds of thousands of years. Examples of Dating Methods for Igneous Rocks.

Now let's look at how the actual dating methods work. Igneous rocks are good candidates for dating. Recall that for igneous rocks the event being dated is when the rock was formed from magma or lava. When the molten material cools and hardens, the atoms are no longer free to move about. Daughter atoms that result from radioactive decays occurring after the rock cools are frozen in the place where they were made within the rock.

These atoms are like the sand grains accumulating in the bottom of the hourglass.

FAQ - Radioactive Age-Dating

Determining the age of a rock is a two-step process. First one needs to measure the number of daughter atoms and the number of remaining parent atoms and calculate the ratio between them. Then the half-life is used to calculate the time it took to produce that ratio of parent atoms to daughter atoms. However, there is one complication. One cannot always assume that there were no daughter atoms to begin with. It turns out that there are some cases where one can make that assumption quite reliably. But in most cases the initial amount of the daughter product must be accurately determined.

Most of the time one can use the different amounts of parent and daughter present in different minerals within the rock to tell how much daughter was originally present. Each dating mechanism deals with this problem in its own way. Some types of dating work better in some rocks; others are better in other rocks, depending on the rock composition and its age.

Let's examine some of the different dating mechanisms now. Potassium is an abundant element in the Earth's crust. One isotope, potassium, is radioactive and decays to two different daughter products, calcium and argon, by two different decay methods. This is not a problem because the production ratio of these two daughter products is precisely known, and is always constant: It is possible to date some rocks by the potassium-calcium method, but this is not often done because it is hard to determine how much calcium was initially present.

Argon, on the other hand, is a gas. Whenever rock is melted to become magma or lava, the argon tends to escape. Once the molten material hardens, it begins to trap the new argon produced since the hardening took place.


  1. whats up a relative age dating activity answers.
  2. how to start off a message on a dating site!
  3. Early Primate Evolution: Isotopes Commonly used for Radiometric Dating!
  4. online dating site indian.

In this way the potassium-argon clock is clearly reset when an igneous rock is formed. In its simplest form, the geologist simply needs to measure the relative amounts of potassium and argon to date the rock.

Radioactive Dating

The age is given by a relatively simple equation:. However, in reality there is often a small amount of argon remaining in a rock when it hardens. This is usually trapped in the form of very tiny air bubbles in the rock.

What is Radiocarbon Dating?

One percent of the air we breathe is argon. Any extra argon from air bubbles may need to be taken into account if it is significant relative to the amount of radiogenic argon that is, argon produced by radioactive decays. This would most likely be the case in either young rocks that have not had time to produce much radiogenic argon, or in rocks that are low in the parent potassium.

One must have a way to determine how much air-argon is in the rock. This is rather easily done because air-argon has a couple of other isotopes, the most abundant of which is argon The ratio of argon to argon in air is well known, at Thus, if one measures argon as well as argon, one can calculate and subtract off the air-argon to get an accurate age. One of the best ways of showing that an age-date is correct is to confirm it with one or more different dating.

Radiometric dating - Wikipedia

Although potassium-argon is one of the simplest dating methods, there are still some cases where it does not agree with other methods. When this does happen, it is usually because the gas within bubbles in the rock is from deep underground rather than from the air. This gas can have a higher concentration of argon escaping from the melting of older rocks. This is called parentless argon because its parent potassium is not in the rock being dated, and is also not from the air.

In these slightly unusual cases, the date given by the normal potassium-argon method is too old. However, scientists in the mids came up with a way around this problem, the argon-argon method, discussed in the next section.


  • sudan gay dating.
  • authentic russian dating sites?
  • exo members dating 2014?
  • How Does Carbon Dating Work.
  • Even though it has been around for nearly half a century, the argon-argon method is seldom discussed by groups critical of dating methods. This method uses exactly the same parent and daughter isotopes as the potassium-argon method. In effect, it is a different way of telling time from the same clock. Instead of simply comparing the total potassium with the non-air argon in the rock, this method has a way of telling exactly what and how much argon is directly related to the potassium in the rock.

    In the argon-argon method the rock is placed near the center of a nuclear reactor for a period of hours. A nuclear reactor emits a very large number of neutrons, which are capable of changing a small amount of the potassium into argon Argon is not found in nature because it has only a year half-life.

    What is radiocarbon dating?

    This half-life doesn't affect the argon-argon dating method as long as the measurements are made within about five years of the neutron dose. The rock is then heated in a furnace to release both the argon and the argon representing the potassium for analysis.

    Radioactive Decay

    The heating is done at incrementally higher temperatures and at each step the ratio of argon to argon is measured. If the argon is from decay of potassium within the rock, it will come out at the same temperatures as the potassium-derived argon and in a constant proportion. On the other hand, if there is some excess argon in the rock it will cause a different ratio of argon to argon for some or many of the heating steps, so the different heating steps will not agree with each other. Figure 2 is an example of a good argon-argon date. The fact that this plot is flat shows that essentially all of the argon is from decay of potassium within the rock.

    The potassium content of the sample is found by multiplying the argon by a factor based on the neutron exposure in the reactor. When this is done, the plateau in the figure represents an age date based on the decay of potassium to argon There are occasions when the argon-argon dating method does not give an age even if there is sufficient potassium in the sample and the rock was old enough to date.

    This most often occurs if the rock experienced a high temperature usually a thousand degrees Fahrenheit or more at some point since its formation. If that occurs, some of the argon gas moves around, and the analysis does not give a smooth plateau across the extraction temperature steps.

    An example of an argon-argon analysis that did not yield an age date is shown in Figure 3. Notice that there is no good plateau in this plot. In some instances there will actually be two plateaus, one representing the formation age, and another representing the time at which the heating episode occurred. But in most cases where the system has been disturbed, there simply is no date given. The important point to note is that, rather than giving wrong age dates, this method simply does not give a date if the system has been disturbed.

    This is also true of a number of other igneous rock dating methods, as we will describe below. Figure 3. In nearly all of the dating methods, except potassium-argon and the associated argon-argon method, there is always some amount of the daughter product already in the rock when it cools. Using these methods is a little like trying to tell time from an hourglass that was turned over before all of the sand had fallen to the bottom.

    One can think of ways to correct for this in an hourglass: One could make a mark on the outside of the glass where the sand level started from and then repeat the interval with a stopwatch in the other hand to calibrate it. Or if one is clever she or he could examine the hourglass' shape and determine what fraction of all the sand was at the top to start with. By knowing how long it takes all of the sand to fall, one could determine how long the time interval was.